Neurological Disorders – Medical Marijuana Research Overview

The following information is presented for educational purposes only. Higher Society of Indiana Inc. provides this information to provide an understanding of the potential applications of cannabidiol. Links to third party websites do not constitute an endorsement of these organizations by Higher Society of Indiana Inc. and none should be inferred.

Neurological disorders are a group of diseases and conditions that affect the brain, spinal cord and nervous system. Studies have shown cannabis can delay the onset or limit the progression of various disorders as well as manage their associated spasms, seizures, tics, pain and other symptoms.

Overview of Neurological Disorders

Neurological Disorders

Neurological disorders are disorders of the body’s nervous system, which consists of the brain, spinal cord, and nerves. According to the University of California San Francisco Medical Center, there are more than 600 nervous system diseases. The most common types include Parkinson’s disease, epilepsy, stroke, multiple sclerosis, migraine, tumors of the brain and spinal cord, Tourette syndrome, peripheral neuropathy, spinal cord injury, and amyotrophic lateral sclerosis (ALS).

Damage to the body’s nervous system can be caused by a genetic disorder, a trauma event that causes a brain or spinal cord injury, tumors, degeneration, autoimmune disorders or blood flow disruptions. The cause of some neurological disorders, like Parkinson’s disease, remains unknown.

While symptoms of neurological disorders vary significantly depending on the specific type of disorder, they can include muscle weakness, loss of muscle control or poor coordination, paralysis, loss of sensation, spasms, seizures, loss of mental control, loss of consciousness, confusion and pain.

There is no cure for most neurological disorders, so the focus of treatment is on limiting the progression of the disorder and managing symptoms. Medications can be used to control pain, spasms and seizures.

Findings: Effects of Cannabis on Neurological Disorders

Research has shown that cannabis possesses neuroprotective effects, which in turn support the health of the brain, spinal cord and nerves, and help in preventing and limiting the progression of various neurological disorders. The major cannabinoids found in cannabis, including cannabidiol (CBD) and tetrahydrocannabinol (THC), have both shown they can help protect neurons, modulate the inflammatory response and encourage neuroregeneration (Lafuente, et al., 2011) (Kubajewska & Constantinescu, 2010) (Croxford, et al., 2008).

Amyotrophic Lateral Sclerosis (ALS)

The cannabinoids in cannabis have shown they are capable of delaying the onset of ALS, prolonging neuron survival and slowing the progression of the disease (Bilsland, et al., 2006) (Carter, Abood, Aggarwal & Weiss, 2010) (Raman, et al., 2004). CBD specifically has been found to significantly slow the onset of ALS (Weydt, et al., 2005). Cannabis can also help with managing the pain, appetite loss, depression, sleeping problems, spasticity and drooling associated with ALS (Amtmann, et al., 2004) (Carter, Abood, Aggarwal & Weiss, 2010).

Epilepsy

In numerous studies, CBE has demonstrated the ability to reduce or even eliminate seizures (Blair, Deshpande & DeLorenzo, 2015) (Rosenberg, Tsien, Whalley & Devinsky, 2015) (Szaflarski & Bebin, 2014) (Devinsky, et al., 2014).

Migraine

Through their activation of the CB1 and CB2, cannabinoids effectively inhibits the pain response caused by migraines (Akerman, Holland, Lasalandra & Goardsby, 2013) (Baron, 2015) (Greco, et al., 2014).

Multiple Sclerosis (MS)

Cannabis’ cannabinoids slow the neurodegenerative process of multiple sclerosis by helping to regulate the body’s immune system, modulating its inflammatory response and encouraging neuroregeneration (Kubajewska & Constantinescu, 2010) (Croxford, et al., 2008). One study showed that cannabinoids reduced the damage to myelin caused from inflammation, thereby offering neuroprotection (Pryce, et al., 2003). Another found that cannabinoids reduced neurological disability, improved motor coordination and limited the progression of the MS in animals with a model of multiple sclerosis (de Lago, et al., 2012).

Parkinson’s Disease

Studies show that cannabis’ neuroprotective effects can slow the progression of Parkinson’s. Its cannabinoids suppress excitotoxicity, glial activation and oxidative injury that lead to neuron degeneration. They improve the mitochondria function and the clearance of cellular debris, which also supports neuron health (More & Choi, 2015) (Garcia-Arencibia, Garcia & Fernandez-Ruiz, 2009) (Lastres-Becker & Fernandez-Ruiz, 2006) (Zeissler, et al., 2013). THC specifically prevents neuron damage caused by free radicals and activates a receptor that encourages the formation of new mitochondria (Zeissler, et al., 2013). CBD has also shown to support the health of neural cells mitochondria (da Silva, et al., 2014) (Zuardi, 2008).

Peripheral Neuropathy

Cannabis effectively reduces neuropathic pain (Jensen, Chen, Furnish & Wallace, 2015) (Baron, 2015) (McDonough, McKenna, McCreary & Downer, 2014). Cannabis-based medicines have even shown they can reduce chronic neuropathic pain that had previously proven refractory to other treatments (Boychuk, Goddard, Mauro & Orellana, 2015).

Prion Diseases

CBD has shown to protect neurons against prion toxicity and therefore reduced the risk of prion diseases, a group of rare degenerative brain disorders (Dirikoc, et al., 2007).

Spinal Cord Injury

Cannabis’ cannabinoids limit neurological damage caused by a spinal cord injury if administered shortly after the traumatic event. The cannabinoids reduce the proinflammatory cytokines and delay the atrophy and degeneration of neurons and thereby protect the white matter and myelin sheath surrounding the cord and nerves (Arevalo-Martin, Garcia-Ovejero & Molina-Holgado, 2010) (Latini, et al., 2014) (Arevalo-Martin, Garcia-Ovejero & Molina-Holgado, 2010) (Arevalo-Martin, et al., 2012). An animal trial have found the administration of cannabinoids shortly after a spinal cord injury caused an improvement in locomotor functional recovery (Kwiatkoski, Guimaraes & Del-Bel, 2012). In addition, cannabis has found to be among the most effective pain relief treatments for people with spinal cord injuries (Wilsey, et al., 2013) (Heutink, Post, Wollaars & van Asbeck, 2011).

Stroke

Cannabinoids reduce infarct volume and improving functional outcome following strokes (England, Hind, Rasid & O’Sullivan, 2015). When administered shortly after a stroke, CBD specifically protects neurons and astrocytes from damage, and therefore leads to improved functional, histological, biochemical, and neurobehavior recovery (Lafuente, et al., 2011).

Tourette Syndrome

Cannabis effectively suppresses tics and improves behavioral problems associated with Tourette syndrome (Muller-Vahl, 2013) (Muller-Vahl, et al., 2002).

Tumors of the Brain and Spinal Cord

CBD has shown it has anti-tumor properties, with one study showing it significantly inhibited the growth of cancer cells (Massi, et al., 2004).

States That Have Approved Medical Marijuana for Neurological Disorders

No states include “neurological disorders” on their list of approved conditions for medical marijuana, although Pennsylvania allows medicinal cannabis for “damage to the nervous tissue of the spinal cord with objective neurological indication of intractable spasticity.” Additionally, many other states allow medical marijuana for the treatment of specific neurological disorders.

For example, Arizona, Arkansas, Connecticut, Delaware, Florida, Georgia, Maine, Massachusetts, Michigan, Minnesota, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Ohio and Pennsylvania have approved medical marijuana for the treatment of ALS. Alabama, Connecticut, Delaware, Florida, Georgia, Iowa, Louisiana, Maine, Mississippi, Missouri, New Hampshire, New Jersey, New Mexico, New York, North Carolina, North Dakota, Ohio, Oklahoma, Pennsylvania, South Carolina, Texas, Utah, Virginia, Wisconsin, and Wyoming have approved medical marijuana for the treatment of either epilepsy or seizure disorders. California and Illinois have specifically approved medical marijuana for the treatment of migraines. Arkansas, Montana, New Mexico, New York and Pennsylvania have approved medical marijuana for the treatment of neuropathy. New Hampshire, New Mexico, New York, North Dakota, Ohio and Pennsylvania have approved medical marijuana specifically for the treatment of spinal cord injuries. Arkansas, Illinois, Minnesota and Ohio have approved medical marijuana specifically for the treatment of Tourette syndrome. Connecticut, Florida, Georgia, Illinois, Maine, Massachusetts, New Hampshire, New Mexico, New York, Ohio and Pennsylvania have approved medical marijuana for the treatment of Parkinson’s disease. Alaska, Connecticut, Florida, Georgia, Illinois, Maine, Massachusetts, New Hampshire, New Jersey, New Mexico, New York, Ohio, Pennsylvania and Vermont allow medical marijuana for the treatment of multiple sclerosis. Alaska, Arizona, Arkansas, California, Colorado, Connecticut, Delaware, Florida, Georgia, Hawaii, Illinois, Louisiana, Maine, Massachusetts, Michigan, Minnesota, Montana, Nevada, New Hampshire, New Jersey, New Mexico, New York, North Dakota, Ohio, Oregon, Pennsylvania, Rhode Island, Vermont, and Washington legally allow medical marijuana for the treatment of cancer, including tumors.

Currently, no states have approved medical marijuana specifically for the treatment of stroke.

However, in Washington D.C., any condition can be approved for medical marijuana as long as a DC-licensed physician recommends the treatment. Plus, various other states will consider allowing medical marijuana to be used for the treatment of neurological disorders with the recommendation from a physician. These states include: California (any debilitating illness where the medical use of marijuana has been recommended by a physician), Connecticut (other medical conditions may be approved by the Department of Consumer Protection), Massachusetts (other conditions as determined in writing by a qualifying patient’s physician), Nevada (other conditions subject to approval), Oregon (other conditions subject to approval), Rhode Island (other conditions subject to approval), and Washington (any “terminal or debilitating condition”).

In addition, various states have approved medical marijuana for symptoms commonly associated with neurological disorders. Many states have approved medical marijuana specifically to treat chronic pain. These states include: Alaska, Arizona, California, Colorado, Delaware, Hawaii, Maine, Maryland, Michigan, Montana, New Mexico, Ohio, Oregon, Pennsylvania, Rhode Island and Vermont. The states of Nevada, New Hampshire, North Dakota, Montana, Ohio and Vermont allow medical marijuana to treat “severe pain.” The states of Arkansas, Minnesota, Ohio, Pennsylvania and Washington have approved cannabis for the treatment of “intractable pain.” Alaska, Arizona, Arkansas, California, Colorado, Delaware, Hawaii, Louisiana, Maryland, Michigan, Minnesota, Montana, Nevada, New Hampshire, North Dakota, Ohio, Oregon, Pennsylvania (intractable seizures), Rhode Island, Tennessee (intractable seizures), Vermont and Washington have approved medical marijuana to treat seizures. Arizona, Arkansas, California, Colorado, Delaware, Florida, Hawaii, Maryland, Michigan, Minnesota, Montana, Nevada, New Hampshire, Oregon, Rhode Island and Washington have approved medical marijuana for the treatment of spasms.

Recent Studies on Cannabis’ Effect on Neurological Disorders
      • Cannabis delays the onset of ALS and slow the progression of the disease.Cannabis and amyotrophic lateral sclerosis: hypothetical and practical applications, and a call for clinical trials.(http://www.ncbi.nlm.nih.gov/pubmed/20439484)
      • CBD-enriched cannabis reduced seizure frequency in 85% of children and caused complete seizure freedom in 14% of children.Perceived efficacy of cannabidiol-enriched cannabis extracts for treatment of pediatric epilepsy: A potential role for infantile spasms and Lennox-Gastaut syndrome. (http://www.ncbi.nlm.nih.gov/pubmed/25935511)
      • Cannabinoids administered shortly following spinal cord injury limits damage.Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery. (http://www.ncbi.nlm.nih.gov/pubmed/23152849)Smoking cannabis significantly improved tremors, rigidity and bradykinesia in Parkinson’s disease patients.Cannabis (medical marijuana) treatment for motor and non-motor symptoms of Parkinson disease: an open-label observational study.(http://www.ncbi.nlm.nih.gov/pubmed/24614667)
      • CBD administered shortly following an ischemic event increased the recovery of electrical activity in the brain by about 50% and reduced seizures by 50%.Neuroprotective effects of the nonpsychoactive cannabinodi cannabidiol in hypoxic-ischemic newborn piglets. (http://www.ncbi.nlm.nih.gov/pubmed/18679164)Cannabinoids reduced neurological disability and the progression of multiple sclerosis in mice.Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. (http://www.ncbi.nlm.nih.gov/pubmed/22342378)
      • Four weeks of cannabis treatment significantly improved spasms in MS patients.A randomized double-blind-placebo-controlled, parallel-group, enriched-design study of nabiximols* (Sativex(®)), as add-on therapy, in subjects with refractory spasticity caused by multiple sclerosis. (http://www.ncbi.nlm.nih.gov/pubmed/21362108)
      • Cannabis significantly improves neuropathic pain that was refractory to other treatments.The effectiveness of cannabinoids in the management of chronic nonmalignant neuropathic pain: a systematic review.(http://www.ncbi.nlm.nih.gov/pubmed/25635955)
      • Six weeks of cannabis treatment reduced tics in patients with Tourette’s syndrome.Cannabinoids reduce symptoms of Tourette’s syndrome. (http://www.ncbi.nlm.nih.gov/pubmed/14521482)

References

Akerman, S., Holland, P.R., Lasalandra, M.P. and Goadsby, PJ. (2013, September). Endocannabinoids in the brainstem modulate dural trigeminovascular nociceptive traffic via CB1 and “triptan” receptors: implications in migraine. Journal of Neuroscience, 33(37), 14869-77.

Amtmann, D., Weydt, P., Johnson, K.L., Jensen, M.P., and Carter, G.T. (2004). Survey of cannabis use in patients with amyotrophic lateral sclerosis. The American Journal of Hospice and Palliative Care, 21(2), 94-104.

Arevalo-Martin, A., Garcia-Ovejero, D., and Molina-Holgado, E. (2010, May). The endocannabinoid 2-arachidonoylglycerol reduces lesion expansion and white matter damage after spinal cord injury. Neurobiology of Disease, 38(2), 304-12.

Arevalo-Martin, A., Garcia-Ovejero, D., Sierra, Palomares, Y., Paniagua-Torija, B., Gonzalez-Gil, I., Oretega-Gutierrez, S., and Molina-Holgado, E. (2012). Early endogenous activation of CB1 and CB2 receptors after spinal cord injury is a protective response involved in spontaneous recovery. PLos One, 7(11), e49057.

Baron, E.P. (2015, June). Comprehensive Review of Medicinal Marijuana, Cannabinoids, and Therapeutic Implications in Medicine and Headache: What a Long Strange Trip It’s Been… Headache, 55(6), 885-916.

Bilsland, L.G., Dick, J.R., Pryce, G., Petrosino, S., Di Marzo, V., Baker, D., and Greensmith, L. (2006). Increasing cannabinoid levels by pharmacological and genetic manipulation delay disease progression in SOD1 mice. The FASEB Journal, 20(7), 1003-1005.

Blair, R.E., Deshpande, L.S., and DeLorenzo, R.J. (2015, September). Cannabinoids: is there a potential treatment role in epilepsy? Expert Opinion on Pharmacology, 16(13), 1911-4.

Boychuk, D.G., Goddard, G., Mauro, G., and Orellana, M.R. (2015, Winter). The effectiveness of cannabinoids in the management of chronic nonmalignant neuropathic pain: a systematic review. Journal of Oral & Facial Pain and Headache, 29(1), 7-14.

Carter, G.T., Abood, M.E., Aggarwal, S.K and Weiss, M.D. (2010). Cannabis and amyotrophic lateral sclerosis: hypothetical and practical applications, and a call for clinical trials. American Journal of Hospice & Palliative Medicine, 27(5), 347-356.

Croxford, J.L., Pryce, G., Jackson, S.J., Ledent, C., Giovannoni, G., Pertwee, R.G., Yamamura, T., and Baker, D. (2008, January). Cannabinoid-mediated neuroprotection, not immunosuppression, may be more relevant to multiple sclerosis. Journal of Neuroimmunology, 193(1-2), 120-9.

da Silva, V.K., de Freitas, B.S., da Silva Dornelles, A., Nery, L.R., Falavigna, L., Ferreira, R.D., Bogo, M.R., Hallak, J.E., Zuardi, A.W., Crippa, J.A., and Schroder, N. (2014, February). Cannabidiol normalizes caspase 3, synaptophysin, and mitochondrial fission protein DNM1L expression levels in rats with brain iron overload: implications for neuroprotection. Molecular Neurobiology, 49(1), 222-33.

de Lago, E., Moreno-Martet, M., Cabranes, A., Ramos, J.A., and Fernandez-Ruiz, J. (2012, June). Cannabinoids ameliorate disease progression in a model of multiple sclerosis in mice, acting preferentially through CB1 receptor-mediated anti-inflammatory effects. Neuropharmacology, 62(7), 2299-308.

Devinsky, O., Cilio, M.R., Cross, H., Fernandez-Ruiz, J., French, J., Hill, C., Katz, R., Di Marzo, V., Jutras-Aswad, D., Notcutt, W.G., Martinez-Orgado, J., Robson, P.J., Rohrback, B.G., Thiele, E., Whalley, B., and Friedman, D. (2014, June). Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia, 55(6), 791-802.

Dirikoc, S., Priola, S.A., Marella, M., Zsurger, N., and Chabry, J. (2007, September 5). Nonpsychoactive cannabidiol prevents prion accumulation and protects neurons against prion toxicity. Journal of Neuroscience, 27(36), 9537-44.

Disorder Index. (n.d.). National Institute of Neurological Disorders and Stroke. Retrieved from http://www.ninds.nih.gov/disorders/disorder_index.htm#A.

England, T.J., Hind, W.H., Rasid, N.A., and O’Sullivan, S.E. (2015, March). Cannabinoids in experimental stroke: a systematic review and meta-analysis. Journal of Cerebral Blood Flow and Metabolism, 35(3), 348-58.

Garcia-Arencibia, M., Garcia, C., and Fernandez-Ruiz, J. (2009, December). Cannabinoids and Parkinson’s disease. CNS & Neurological Disorders Drug Targets, 8(6), 432-9.

Greco, R., Mangione, A.S., Sandrini, G., Nappi, G. and Tassorelli, C. (2014, March). Activation of CB2 receptors as a potential therapeutic target for migraine: evaluation in an animal model. The Journal of Headache and Pain, 15, 14.

Heutink, M., Post, M.W., Wollaars, M.M., and van Asbeck, F.W. (2011). Chronic spinal cord injury pain: pharmacological and non-pharmacological treatments and treatment effectiveness. Disability and Rehabilitation, 33(5), 433-40.

Jensen, B., Chen, J., Furnish, T., and Wallace, M. (2015, October). Medical Marijuana and Chronic Pain: a Review of Basic Science and Clinical Evidence. Current Pain and Headache Reports, 19(10), 524.

Kubajewska, I., and Constantinescu, C.S. (2010, August). Cannabinoids and experimental models of multiple sclerosis. Immunobiology, 215(8), 647-57.

Kwiatkoski, M., Guimaraes, F.S., and Del-Bel, E. (2012, April). Cannabidiol-treated rats exhibited higher motor score after cryogenic spinal cord injury. Neurotoxicity Research, 21(3), 271-80.

Lafuente, H., Alvarez, F.J., Pazos, M.R., Alvarez, A., Rey-Santano, M.C., Mielgo, V., Murgia-Esteve, X., Hilario, E., and Martinez-Orgado, J. (2011, September). Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs. Pediatric Research, 70(3), 272-7.

Lastres-Becker, I., and Fernandez-Ruiz, J. (2006). An overview of Parkinson’s disease and the cannabinoid system and possible benefits of cannabinoid-based treatments. Current Medicinal Chemistry, 13(30< 3705-18.

Latini, L., Bisicchia, E., Sasso, V., Chiurchiu, V., Cavallucci, V., Molinari, M., Maccarrone, M., and Viscomi, M.T. (2014, September 4). Cannabinoid CB2 receptor (CB2R). stimulation delays rubrospinal mitochondrial-dependent degeneration and improves functional recovery after spinal cord hemisection by ERK1/2 inactivation. Cell Death & Disease, e1404.

Massi, P., Vaccani, A., Ceruti, S., Colombo, A. Abbracchio, M.P., and Parolaro, D. (2004, March). Antitumor effects of cannabidiol, a nonpsychoactive cannabinoid, on human glioma cell lines. The Journal of Pharmacology and Experimental Therapeutics, 308(3), 838-45.

McDonough, P., McKenna, J.P., McCreary, C., and Downer, E.J. (2014, October). Neuropathic orofacial pain: cannabinoids as a therapeutic avenue. The International Journal of Biochemistry & Cell Biology, 55, 72-8.

More, S.V., and Choi, D.K. (2015, April). Promising cannabinoid-based therapies for Parkinson’s disease: motor symptoms to neuroprotection. Molecular Neurodegeneration, 10, 17.

Muller-Vahl, K.R. (2013). Treatment of Tourette syndrome with cannabinoids. Behavioral Neurology, 27(1), 119-24.

Muller-Vahl, K.R., Schneider, U., Koblenz, A., Jobges, M., Kolbe, H., Daldrup, T., and Emrich, H.M. (2002, March). Treatment of Tourette’s syndrome with Delta 9-tetrahydrocannabinol (THC): a randomized crossover trial. Pharmacopsychiatry, 35(2), 57-61.

Neurological Disorders. (n.d.). UCSF Medical Center. Retrieved from http://www.ucsfhealth.org/conditions/neurological_disorders/.

Pryce, G., Ahmed, Z., Hankey, D.J., Jackson, S.J., Croxford, J.L. Pocock, J.M., Ledent, C., Petzold, A., Thompson, A.J., Giovannoni, G., Cuzner, M.L., and Baker, D. (2003, October). Cannabinoids inhibit neurodegeneration in models of multiple sclerosis. Brain, 126(Pt 10), 2191-202.

Raman, C., McAllister, S.D., Rizvi, G., Patel, S.G., Moore, D.H., and Abood, M.E. (2004). Amyotrophic lateral sclerosis: delayed disease progression in mice by treatment with a cannabinoid. Amyotrophic Lateral Sclerosis & Other Motor Neuron Disorders, 5(1), 33-30.

Rosenberg, E.C., Tsien, R.W, Whalley, B.J., and Devinsky, O. (2015, August 18). Cannabinoids and Epilepsy. Neurotherapeutics, Epub ahead of print. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/26282273.

Szaflarski, J.P., and Bebin, E.M. (2014, December). Cannabis, cannabidiol, and epilepsy–from receptors to clinical response. Epilepsy & Behavior, 41, 277-82.

Weydt, P., Hong, S., Witting, A., Moller, T., Stella, N., and Kliot, M. (2005). Cannabinol delays symptom onset in SOD1 transgenic mice without affecting survival. Amyotrophic Lateral Sclerosis & Other Motor Neuron Disorders, 6(3), 182-184.

Wilsey, B., Marcotte, T.D., Deutsch, R., Gouaux, B., Sakai, S., and Donaghe, H. (2003, February). Low dose vaporized cannabis significantly improves neuropathic pain. Journal of Pain, 14(2), 136-148.

Zeissler, M.L., Eastwood, J., Hanemann, C.O., Zajicek,J., and Carroll, C., (2013). 9-Tetrahydrocannabinol is protective through PPARy dependent mitochondrial biogenesis in a cell culture model of Parkinson’s disease. Journal of Neurology, Neurosurgery and Psychiatry, 84.

Zuardi, A.W. (2008, September). Cannabidiol: from an inactive cannabinoid to a drug with wide spectrum of action. Revista Brasileira De Psiquiatria, 30(3), 271-80.

This article may contain certain forward-looking statements and information, as defined within the meaning of Section 27A of the Securities Act of 1933 and Section 21E of the Securities Exchange Act of 1934, and is subject to the Safe Harbor created by those sections. This material contains statements about expected future events and/or financial results that are forward-looking in nature and subject to risks and uncertainties. Such forward-looking statements by definition involve risks, uncertainties.

X